Ethernet Tester – PacketExpert 10 Gbps, 2.5 Gbps, or 1 Gbps™

PacketExpert™ 10GX - Portable Unit (PXN100, PXN101)

Physical Specifications	Length: 8.45 in (214.63 mm)		
,	• Width: 5.55 in (140.97 mm)		
	Height: 1.60 in (40.64 mm)		
	Weight: 1.713 lbs		
External Power Supply	• +12 Volts (Medical Grade), 3 Amps (For portable units having serial number ≥ 188400)		
	+9 Volts, 2 Amps (For portable units having serial number < 188400)		
BUS Interface	• USB 3.0		
	Optional 4-Port SMA Jack Trigger Board(TTL Input/Output)		
Protocols	IEEE 802.3ae LAN PHY compliance		
	RFC 2544 compliance		

PacketExpert™ Software

PacketExpert™ 10GX (10/2.5/1Gbps) (10/100/1000 Mbps)

Windows 10/11 64-bit OS

PacketExpert™ 10GX – 1 Gbps Mode

Ports Port 1		Port 2		Port 3	Port 4		
Interface Type		SFP	RJ45	SFP	RJ45	SFP+	SFP+
Electrical	Speeds	10/100/1000	0 Mbps	10/100/1000 Mbps		10/100/1000 Mbps	10/100/1000 Mbps
	Designations	10BASE-T		10BASE-T		10BASE-T	10BASE-T
		100BASE-T	X	100BASE-TX		100BASE-TX	100BASE-TX
		1000BASE-	Т	1000BASE-T		1000BASE-T	1000BASE-T
Optical	Speeds	100/1000 M	bps	100/1000 Mbps		1000 Mbps	1000 Mbps
	Designations	100BASE-F	X	100BASE-FX		1000BASE-X	1000BASE-X
		1000BASE-	X	1000BASE-X			

PacketExpert™ 10GX – 2.5 Gbps Mode

Ports		Port 1	Port 2
Interface Type		SFP+	SFP+
Electrical	Speeds	2.5 Gbps	2.5 Gbps
	Designations	2500BASE-T	2500BASE-T
Optical	Speeds	2.5 Gbps	2.5 Gbps
	Designations	2500BASE-X	2500BASE-X

PacketExpert™ 10GX – 10 Gbps Mode

	Port	Port 1	Port 2	
Interface Type		SFP+	SFP+	
Electrical	Speeds	10 Gbps	10 Gbps	
	Designations	10GBASE-T	10GBASE-T	
Optical	Speeds	10 Gbps	10 Gbps	
	Designations	10GBASE-R	10GBASE-R	

PacketExpert™ 10GX - Optical Ports

PacketExpert™ 10GX - Electrical Ports

PacketExpert™ 10GX – Mix and Match

MTOP™ Rack Units

High Density 1U Rack option

Stacked High Density 1U Rack option

Physical Specifications	 Length: 16 in (406.4) Width: 19 in (482.6) Height: 1U / 2U
External Power Supply	ATX Power Supply
BUS Interface	 1U mTOP™ (MT001 + 3x PXN100) Rackmount Enclosure can support up to 3 PXN100s 2U Rack Mount (with 6x PXN100) Rackmount Enclosure can support up to 6 PXN100s Optional 4 to 12 Port SMA Jack Trigger Board (TTL Input/Output)
SBC Specifications	 Intel Core i3, Windows® 11 Pro 64-bit OS USB 3.0 and USB 2.0 Hub, ATX Power Supply USB Type C ports, Ethernet 2.5GigE port Min 256GB Hard drive, 8G Memory Two HDMI ports

mTOP™ 1U Rack Option with Built in SBC

mTOP™ 1U Rack Option with 12 TTL

mTOP™ Probe with 10GX Hardware Unit + SBC

Physical Specifications	 Length: 10.4 in. (264.16 mm) Width: 8.4 in. (213.36 mm) Height: 3.0 in. (76.2 mm) Optional 4-Port SMA Jack Trigger Board (TTL Input/Output) External USB based Wi-Fi adaptor
External Power Supply	+12 Volts (Medical Grade), 3 Amps
SBC Specifications	 Intel Core i3 or optional i7 NUC Equivalent, Windows® 11 64-bit Pro Operating System USB 3.0 and USB 2.0 Ports, 12V/3Amps Power Supply USB Type C ports, Ethernet 2.5GigE port 256 GB Hard drive, 8G Memory (Min) Two HDMI ports

Optical Connectors and SFP Transceivers

LC Connectors

850nm /1310nm/1550nm SFP Modules

PacketExpert[™] 10GX supports LC connectors and 850nm/1310nm/1550nm SFP (Small Factor Pluggable) modules

Note: In case customer have different type of connectors, then we need converters like LC-to-SC, LC-to-FC and vice-versa.

Applications

- Test and verify QoS Parameters of network devices like Switches/Routers etc.
- End to end testing of network paths for QoS parameters
- In-depth troubleshooting of the Carrier network in the event of network failures or impairments
- QoS testing of Triple-play services to ensure that they fully qualify SLA parameters
- Terrestrial wireless, satellite, and other WAN technologies network validations
- Test VoIP network in real-time conditions to verify if it meets the quality requirements before you deploy
- Testing video on IP networks by emulating the loss and congestion characteristics
- SPF support can be used for Broadband aggregation applications, Metro edge switching, Metro and access multi-service platforms, and are suitable for Fast Ethernet applications

PacketExpert[™]10GX-Ethernet / IP Tester

- BERT
- RFC 2544
- Smart Loopback
- ITU-T Y.1564 (ExpertSAM™)
- Multi-Stream Traffic Generator Analyzer
- RFC-6349 based TCP Throughput Testing (ExpertTCP™)

- WAN Emulation (Single stream) IPLinkSim
- WAN Emulation (Multi-Stream) IPNetSim
- Wire-Speed Record / Playback
- PacketBroker

Wirespeed BERT

OSI Model

BER Test Setup at Layer 3 / 4

Layer 3 Testing between PacketExpert™ located in different IP Networks

In this case, Source and the Destination PacketExpert[™] applications are located in different IP networks. These 2 networks are connected through a router. A simple example above shows 2 LANs connected through a router.

BERT Results (with LEDs) and Graph

- Optional Sequence number insertion allows detecting Out-of-sequence packets and packet loss
- Detailed BERT statistics like the Bit Error Count, Bit Error Rate, Bit Error Seconds etc., are provided
- Bit Error Count is displayed in both Tabular and Graphical formats

All Ports Result

Port 1		Port 2		
Porci	40 207 770	POIC 2	49.445.000	
				4
			~	
				4
				4
				v
1		1		1
Port 1		Port 2		
	48 414 936		48 485 825	≡
	48 415 988		48 486 885	
	0		0	
	73 304 838 352		73 412 173 404	
	100.000		100.000	
	9869.621		9869.621	
	814863		814863	
	0		0	~
Port 1		Port 2		
•		•		
•		•		
•		•		
•		•		
Port 1		Port 2		[
	Cunc		Sunc	
				≡
	_		•	_
	-			
			-	~
	Port 1 Port 1 Port 1 Port 1	48 397 778 48 398 858 0 73 277 416 806 100.000 9869.621 814864 0 Port 1 48 414 936 48 415 988 0 73 304 838 352 100.000 9869.621 814863 0 Port 1	#8 397 778 #8 398 858 #0 73 277 416 806 100.000 9869.621 814864 #0 Port 1 Port 2 #8 414 936 #8 415 988 #0 73 304 838 352 100.000 9869.621 814863 #0 Port 1 Port 2 Port 1 Port 2 **Port 1 **Port 2 **Port 1 **Port 2 **Port 1 **Port 2 **Port 1 **Port 2 **Port 3 **Port 4 **Port 5 **Port 60:00:59 562 588 769 680 #0 0.000E+000 #0 0.000E+000 #0 0	## 397 778

RFC 2544 Testing

Dual RFC 2544 Testing

RFC 2544 test application includes the following tests:

- Throughput Maximum number of frames per second that can be transmitted without any error
- Latency Measures the time required for a frame to travel from the originating device through the network to the
 destination device
- Frame Loss Measures the network's response in overload conditions
- Back-to-Back It measures the maximum number of frames received at full line rate before a frame is lost.

Single Port RFC 2544

In single port RFC 2544 test,

- For PacketExpert™ 1G, the RFC 2544 test can be done either on Port #2 or Port #3 at a time and it is not possible to run RFC 2544 test on both the ports (Port #2, Port #3) simultaneously
- For PacketExpert™ 10G or 10GX, the RFC 2544 test can be done either on Port #1 or Port #2 at a time and it is not possible to run RFC 2544 test on both the ports (Port #1, Port #2) simultaneously

Highlights

- Throughput, back-to-back, latency and frame loss testing supporting uni-directional and bi-directional traffic between ports
- Supports RFC 2544 on electrical / optical (1000Mbps) ports and optical only (10G) ports
- Includes various parameter configurations such as Test Selection, Frame Sizes selection, Unidirectional/Bidirectional,
 Number of trials, Trial Duration, and many more
- User-defined options to configure various packet header parameters, like MAC addresses, IP addresses, UDP ports, VLAN
 ID, MPLS Labels, and more
- Results are displayed in both tabular as well as graphical format

Global Configurations

Individual Test Configuration Details

Throughput

Latency

Frame Loss

Back-to-Back

Results

- Throughput Both relative
 (% of link speed) and absolute
 (in Mbps) throughput values
 are displayed
- Latency displayed in Microseconds
- Back-to-Back Displayed in Frames/Burst
- Frame Loss Displays the
 Frame Loss Rate (in %)
 against attempted Frame Rate

(in % of link speed)

Graphs

Throughput

Graphs

Latency

Store and Forward Latency Test Graph

Bit Forward Latency Test Graph

Graphs

Back-to-Back

Frame Loss

Port Statistics

- Per port detailed statistics are provided
 - > Tx / Rx Frame count
 - Number of Bytes transmitted & received
 - > Tx & Rx Frame Rate
 - > Broadcast, Multicast, Control, VLAN, Pause Frame count
 - > Frame count for byte lengths 64/65-127
 - MPLS and VLAN Frame count for various stack level
 - > IPv4/ UDP packet count
 - Oversized / Undersized Error frame count
 - > FCS error count
 - > IP/UDP checksum error count and others

Generate Reports

ΧI

Configuration

Smart Loopback

2 Ports BERT and Loopback

- Loopback helps in easy test setup, especially in end-to-end testing, when the other end is in a remote place
- In such cases, one PacketExpert[™] 10GX can be put in constant Loopback at the remote end, and BERT tests can be started / stopped anytime at the local end

Layer 2 - Ethernet Loopback Types

- PacketExpert[™] 10GX has all ports or 2 ports Loopback capability
- PacketExpert[™] 10GX supports Layer-wise Loopback as well as Smart Loopback
- The above picture depicts the Ethernet Loopback type, swaps Source and Destination MAC addresses before sending back the packet

Loopback Testing (all ports or 2 ports)

- Supports Loopback on 10G / 1G ports
- Loopback Types Smart Loopback, Layer 1, Ethernet, IP, UDP
- General statistics per port (similar to BERT port level statistics)

ITU-T Y.1564 (ExpertSAM™)

Ethernet Network Testing

- A single test to validate service-level agreements (SLAs) as per ITU-T Y.1564 standard.
- ITU-T Y.1564 completes this testing in two phases based on the SLA parameters:
 - Service Level Agreement Parameters: Information Rate (IR), Frame Transfer Delay (FTD), Frame Delay Variation (FDV), Frame Loss Ratio (FLR)
 - Service Configuration Test
 - Service Performance Test

ITU-T Y.1564 (ExpertSAM™)

- Service Configuration Test confirms the endto-end configuration with the SLA parameters for all configured traffic streams
- Service Performance Test transmits all configured traffic streams simultaneously CIR confirming all traffic is able to transverse the network under full load with the above-mentioned parameters.

Highlights

- Complete validation of Ethernet service-level agreements (SLAs) in a single test
- ITU-T Y.1564 standard compliance
- Service Configuration and Service Performance tests methodology supported
- KPIs like Information Rate (IR) or Throughput, Frame Loss Ratio (FLR), Frame Transfer Delay (FTD) or Latency, and Frame Delay Variation (FDV) or Jitter, measured simultaneously for multi streams, and Pass/Fail verdict declared.
- Capability to generate traffic at throughput of CIR (guaranteed traffic), EIR (best effort bandwidth), and traffic policing (dropped bandwidth) rates ensuring Key performance indicators (KPI) validation
- EMIX frame sizes supported per service up to 7 frame sizes can be defined per service
- Supports multiple services with varying performance requirements that meets full load conditions
- Stacked VLAN supported C-Tag and S-Tag to simulate Carrier Ethernet traffic
- Simultaneous validation of all the services quality over time

RFC 2544 VS Y.1564 (ExpertSAM™)

	RFC 2544	Y.1564
Measurements	Throughput, burstability, frame loss and latency	Throughput, burstability, frame loss, latency, packet jitter, QoS
Services	Link level	Multiple concurrent service levels
Performance	Measuring maximum performance	Key performance indicators (KPI) validation
Throughput	No separation of the committed and excess traffic	CIR, EIR and Traffic Policing constantly ensuring that KPI are met during the test
Frame Delay	Tests one frame in every test time and does not consider any latency variation that might occur over a longer test period.	Latency is measured during the test on all the generated frames measuring any deviation out of the defined range
Frame loss	Frame loss is measured during rate distribution throughput test where the frame loss distribution doesn't align with committed rate without complying to the KPI	Frame loss measurement during throughput test
Frame Delay Variation	Frame delay variation is not measured	Frame delay variation is measured for traffic generated up to the CIR ensuring proper traffic prioritization

Service Configurations

Service Configuration Collapsed Summary View

Service Configuration Expanded View

Service Configuration Test Results

Service Result Overview

Service Detail Results

Service Performance Test Overall Status

Service Performance Test Results

ervice Performance Results															
IR(Mbps),	R(Mbps), FLR(%), FTD(msec), FDV(msec) Test Time 00:00:16 Vertical FTD Unit msec FDV Unit usec FDV Unit usec														
Service	Verdict	IR (Curr)	IR (Min)	IR (Avg)	IR (Max)	FL (Count)	FLR (Rate)	FTD (Curr)	FTD (Min)	FTD (Avg)	FTD (Max)	FDV (Curr)	FDV (Min)	FDV (Avg)	FDV (Max)
1	PASS	625.00	625.00	625.00	625.00	2	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
2	PASS	625.00	625.00	625.00	625.00	2	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.115000
3	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.115000
4	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
5	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
6	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.128000
7	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.115000
8	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
9	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
10	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
11	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.115000
12	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
13	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
14	PASS	625.00	625.00	625.00	625.00	3	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
15	PASS	625.00	625.00	625.00	625.00	2	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.122000
16	PASS	624.95	624.94	624.95	624.95	2	0.000	0.018	0.001	0.015	0.021	0.003000	0.003000	0.003000	8.128000

ITU-T Y.1564 (ExpertSAM™) Graph

- Committed information rate or CIR is the average bandwidth guaranteed by a service provider. At any given time, the bandwidth should not fall below this committed figure.
- Excess Information Rate or EIR is the CIR plus excess rate that service provider claims to provide on a 'best-effort' basis.

Multi-Stream Traffic Generator and Analyzer

Multi-Stream Traffic Generator and Analyzer (1 Gbps, 2.5 Gbps, or 10 Gbps)

Multi-Stream Traffic Generator & Analyzer Results (Horizontal View)

Multi-Stream Traffic Generator & Analyzer Results IR(Mbps), FLR(%), FTD(msec), FDV(msec) Test Time 00:00:53 Vertical IIII FTD Injit msec FDV Injit msec Activate All DeActivate All DeAct																					
TR(IMI	ops), F	LR(%), FIL	J(msec), FDV(I	nsec) Test T	ime 00:00:53	Vertical FTD Unit msec								DeActivate All							
Strea	m No	Seconds	TxFrames	RxFrames	RxBytes	FL Count	FLR	IR (Curr)	IR (Min)	IR (Max)	IR (Avg)	FTD	FTD	FTD	FTD	FDV (Curr)	FDV (Min)	FDV (Max)	FDV (Avg)		
$\overline{\mathbf{v}}$	1	55	1 146 226	1 125 387	679 852 618	20 839	1.818	104.05	104.03	104.06	133.78	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
abla	2	55	1 278 940	1 255 686	642 911 232	23 254	1.818	98.97	98.94	98.97	127.24	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
$\overline{\mathbf{v}}$	3	55	5 832 149	5 726 109	7 902 030 420	106 040	1.818	1187.65	1187.30	1187.65	1526.96	0.002	0.002	0.003	0.002	< 1us	0.000	< 1us	< 1us		
\checkmark	4	55	1 214 894	1 192 804	1 646 069 520	22 090	1.818	247.40	247.33	247.41	318.08	0.002	0.002	0.003	0.002	< 1us	< 1us	< 1us	< 1us		
abla	5	55	155 163	152 342	157 521 628	2 821	1.818	23.79	23.79	23.80	30.58	0.002	0.002	0.003	0.002	< 1us	< 1us	< 1us	< 1us		
abla	6	55	18 212 176	17 881 043	2 324 535 590	331 133	1.818	397.36	397.24	397.36	510.89	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
abla	7	55	14 585 983	14 320 782	19 762 679 160	265 201	1.818	2970.25	2969.39	2970.26	3818.88	0.002	0.002	0.003	0.002	< 1us	0.000	< 1us	< 1us		
abla	8	55	5 216 779	5 121 928	5 244 854 272	94 851	1.818	792.20	791.97	792.20	1018.53	0.002	0.002	0.003	0.002	< 1us	0.000	< 1us	< 1us		
abla	9	55	1 535 124	1 507 212	771 692 544	27 912	1.818	118.79	118.76	118.79	152.73	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
abla	10	55	3 434 715	3 372 265	674 453 000	62 450	1.818	109.91	109.88	109.91	141.31	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
abla	11	55	3 176 550	3 118 794	405 443 220	57 756	1.818	69.31	69.29	69.31	89.11	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
\square	12	55	9 085 290	8 920 101	1 159 613 130	165 189	1.818	198.22	198.17	198.23	254.86	0.002	0.002	0.003	0.002	< 1us	0.000	< 1us	< 1us		
abla	13	55	9 844 599	9 665 605	5 841 891 662	178 994	1.818	894.11	893.85	894.12	1149.56	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
	14	55	27 539 785	27 039 059	16 342 406 346	500 726	1.818	2501.23	2500.50	2501.23	3215.84	0.002	0.001	0.003	0.002	< 1us	0.000	0.001	< 1us		
abla	15	55	395 501	388 310	793 705 640	7 191	1.818	118.74	118.71	118.74	152.66	0.003	0.002	0.003	0.003	< 1us	0.000	< 1us	< 1us		
abla	16	55	1 090 764	1 090 764	658 606 880	0	0.000	98.97	98.94	98.98	129.60	0.002	0.002	0.003	0.002	< 1us	0.000	< 1us	< 1us		

Throughput (IR) Graph

Frame Delay Variation – FDV Graph

Frame Transfer Delay – FTD Graph

Report Generation in PDF and CSV Format

ExpertTCP™-TCP Throughput Testing (RFC 6349)

ExpertTCP™ (RFC-6349 Testing)

ExpertTCP™ Main Screen

Network Setup

All settings configured locally on the client side

Status and Results

Statistics and Periodic Results

Statistics are updated every second and includes -

- TCP Transmitted Frames/Bytes
- TCP Retransmitted Frames/Bytes
- Retransmitted Bytes Percentage

Throughput and RTT values are calculated every second and displayed. Minimum,

Maximum and Average Values are displayed

Final Results

Ideal Throughput - the maximum possible TCP throughput for the given CIR

Ideal Transfer Time - the time taken to transfer the test data size at the ideal throughput

TCP Transfer Time Ratio - Measure of how much Actual transfer time is greater than the Ideal transfer time

TCP Efficiency - measure of the number of Transmitted bytes compared to the retransmitted bytes

Buffer Delay - measure of how much the RTT increases during the actual TCP Throughput test compared to the Baseline RTT

Simulate Real-World IP Network Impairments, Delay, Errors, Loss, Optical, Electrical

Overview

How does GL simulate real-world IP Networks? What is GL's IPNetSim?

- Lab Testing Solution application and automation
- Emulate Full Duplex 1 Gbps and 10 Gbps networks

- Real-world network conditions by imposing impairments
- Multiple streams independently configured

Application Overview

- Test Enterprise and Individual-level applications...
 - Audio and video streaming (VoIP, IMS, HDT, IPTV)
 - Storage services (Critical Data Access)
 - Cloud and web services
 - > FTP / HTTP
- Simulate backhaul network
 - > Static and dynamic networks
 - > Satellite + other long delay networks
- Test Quality of Service (QoS) and Quality of Experience (QoE)
- Evaluate the stability of network devices (switches, VoIP Phones, VoIP PBXs, Set-top boxes and VoD Servers

"Stream" Overview

Define Streams in Packet Mode

Define Streams in Raw Mode

Traffic Bandwidth

- Traffic which exceeds the stated rate is silently dropped
- UDP Applications will experience data loss
- TCP Applications should adapt via congestionavoidance algorithms

Simulate WAN Applications where Traffic Policing
 Policies may be in effect, i.e. Service Level
 Agreements between Provider and Customer

Latency / Jitter

- Apply Static Delay, or a Uniform or Exponential distribution between a minimum and maximum
- Delay a packet up to 8000 ms in 1ms increments

Packet Reordering

- Reorder 1 out of every X packets
- Set a minimum time in ms to hold the reordered packet
- Set a maximum time in ms to hold the reordered packet

Software Specification

Multi-streams WAN Emulation - IPNetSim™	Single-stream WAN Emulation - IPLinkSim™							
Stream Definition	-NA-							
Hardware wire-speed filters (up to 16 links)								
Packet Mode (field headers)								
Raw Mode (bit level)								
Parameters								
IP Source and Destination Address Range								
UDP Source and Destination Port Range								
MAC Addresses								
VLAN ID								
MPLS Label								
WAN Emulation Parameters	WAN Emulation Parameters							
 Bandwidth control – 1 Kbps up to 10 Gbps 	Bandwidth control - 10 Kbps up to 1000 Mbps							
Latency/Delay	Latency/Delay							
 0 milliseconds up to 1.25 seconds (1250 msec) per stream (for 1Gbps link) 	O milliseconds to 8 seconds (8000 milliseconds) (for 1G/10 Gbps link)							
0 milliseconds up to 0.5 seconds (500 msec) per stream (for	single delay, uniform, random distributions							
10 Gbps link)	Congestion Emulation with Background traffic (% of total bandwidth)							
single delay, uniform, random distributions	➤ Link Utilization Rate –0 – 100%							
Packet Loss Rate - 0–100%	➤ Burst Size - 64 – 1,000,000 bytes							
 Packet Reordering Rate - 0-100% with Delay range of up to 2 seconds 	Packet Loss Rate - 0–100%							
Packet Duplication Rate - 0 - 100%	• Packet Reordering Rate - 0-100% with Delay range of up to 8 seconds							
 Logic Error Insertion Rate - 10⁻¹ to 10⁻⁹ 	Packet Duplication Rate - 0 - 100%							
 Maximum Frame Size Supported – 2048 bytes 	• Logic Error Insertion Rate - 10 ⁻¹ to 10 ⁻⁹							
	• FCS Error insertion Rate - 10 ⁻¹ to 10 ⁻⁹							

Wirespeed Ethernet Packet Capture and Playback with Hardware Filtering

Wire-Speed Record/Playback

Working Principle

Wirespeed Packet Filters and Triggers

- Filter packets and record only packets of interest
- Capture simultaneously on 2 ports with 120 bytes deep filter per port (for record application) and set filter on any one
 of the ports or all ports
- Packet filtering can be based on all Layer 2 (Ethernet), Layer 3 (IP) Layer 4 (UDP/TCP) Headers
- Up to 16 filters can be defined per port. Each filter is up to 120 bytes wide
- Filter can be set to each bit in the packet (Raw mode) or each field (Packet Mode)
- Generates a trigger (1 Microsecond pulse) for each packet that passes the filter
- Filter on various header fields like Source/Destination MAC Address, VLAN Id, MPLS Label, Source/Destination Ipv4 Address, Source/Destination UDP ports

Capture Traffic of Interest

The network traffic containing n streams of varying data rate is filtered at the PacketExpert[™] hardware as per the filter settings. The overall transmit rate is limited to the USB 2.0 transfer rate.

Transmit rate can go up to 350 Mbps depending on the host PC configuration.

PacketBroker™ – Passive Ethernet Tap

PacketBroker™ in Network

Packet Tap, Filter, Modification, and Output

PacketBroker 10G mode

Filtering with TTL Generation

Aggregation

Filter Configuration Menu

Basic Mode Filtering

Group Mode Filtering

Filter Configuration

Packet Mode Filtering

Filter Configuration

Raw Mode Filtering

Group Mode Filter configuration

- PacketBroker[™] includes an option to group the configured filters
- Any number of individual filters can be selected to form a group. Using "AND" and "OR" operators and any combination of filter groups can be created
- The multiple filter Groups created can be further grouped to form Super Groups using "AND" or "OR" operators
- The result of all the filters within the group is taken and either "OR"ed or "AND"ed and a final single Group result
 TRUE or FALSE is obtained

Working Principle of Filter, Group and Super Group

Command Line Interface (CLI)

MAPS™ CLI Client/Server Architecture

 PacketExpert[™] 10GX also supports Command line Interface (CLI) to access all the functionalities remotely such as Bert, Loopback, RFC 2544, Record Playback, IPNetSim[™], ExpertSAM[™], PacketBroker[™], and Multi Stream Traffic Generator and Analyzer using Python, C# client APIs and MAPS[™] CLI Client/Server architecture

Working Principle of MAPS™ CLI

Working Principle of MAPS™ CLI

MAPS™ CLI Server

Python Client and Scripting

- The Python Client consists of following components:
- Python API scripts, that provide High Level APIs, using which all the PacketExpert[™] functionalities are accessible to the users
- These APIs in turn use a low level library to communicate with the PacketExpert™ MAPS™ server

Python Client

```
*Python 3.6.7rc2 Shell*
File Edit Shell Debug Options Window Help
RESTART: C:\Users\glitteam\Desktop\PythonClient3 6\AllPortBertSampleApplication.py
ALLPORTBERT Test
Press any key to continue , 'q' to quit
Running BERT Test
Device Initialised
Module Initialised
Loading Configuration
Load Configuration Done
Start Bert.....
Bert Started
BERT STATISTICS
TrafficStatus = No Rx Traffic
SyncStatus = Idle
BitErrorStatus = Idle
OutOfSequenceStatus = Idle
BERTStatus = No Rx Data
BERTTestTime = 00:00:00
BitsReceived = 0
BitErrorCount = 0
BitErrorRate = 0.000E+000
BitErrorSeconds = 0
SyncLossCount = 0
SyncLossSeconds = 0
OOSCount = 0
OOSSeconds = 0
ErrorFreeSeconds = 0
******************
PORT TX STATISTICS
Total Frames = 0
Valid Frames = 0
Number of Bytes = 0
Link Utilisation = 0.0
Data Rate = 0.0
Frame Rate = 0.0
Broadcast Frames = 0
Multicast Frames = 0
Control Frames = 0
VLAN Frames = 0
```


C# Client

PacketExpert™ Integration with LabVIEW using C# Client

PacketExpert™ Integration with LabVIEW

PacketExpert™ Integration with LabVIEW using C# Client

BERT Results

BERT Statistics

Thank you

