PPP Protocol Overview
Point-to-Point Protocol (PPP)

- Point to Point (PPP) networks are used in Ethernet, POS, and in some T1/E1 and T3/E3 dedicated circuits.

- Designed to work with numerous network layer protocols (such as Internet Protocol (IP), Internetwork Packet Exchange (IPX), AppleTalk,…) and transport packets between two peers.

- Encapsulates other network layer protocols like IP for transmission on synchronous and asynchronous communications lines

- Two encapsulated forms of PPP, Point-to-Point Protocol over Ethernet (PPPoE) and Point-to-Point Protocol over ATM (PPPoA), are used most commonly by Internet Service Providers

- PPP links provide full-duplex simultaneous bi-directional operation, & deliver packets in order

- Widely used in synchronous connections between LANs, bridges, routers and other intermediate devices

- Major Features of PPP Protocol are:
 - Authentication
 - Encapsulation of higher layer protocols.
The Point-to-Point Protocol (PPP), as described in RFC 1661, provides an encapsulation protocol for transporting network layer traffic over point-to-point links, such as synchronous serial or Integrated Services Digital Network (ISDN).
PPP Frame Structure

- **Protocol field**: Identifies the datagram encapsulated in the information field of the packet
- **Information field**: Contains the datagram for the protocol specified in the Protocol field
- **Padding**: On transmission, the Information field may be padded with an arbitrary number of octets
The basic operation of the PPP is based on the ISO High-Level Data Link Control (HDLC) protocol.

The PPP Frame Format uses the same basic format as HDLC.
To establish communications over a point-to-point link, each end of the PPP link MUST first send LCP packets to configure and test the data link.

The peer MAY be authenticated when the link is established.

Then, PPP MUST send NCP packets to choose and configure one or more network-layer protocols.

The link will remain configured for communications until explicit LCP or NCP packets close the link down.
There are many different PPP control protocols that contain specific information that is used to configure, manage and discontinue PPP links, and to implement the various features that comprise PPP.

Two of such protocols are:

- Link Control Protocol (LCP)
- Network Control Protocols (NCPs)
The LCP is responsible for configuring, maintenance, and termination of links.
LCP Negotiation Options

1. Configure - Request: W, X = 100, Y = 0, Z
2. Configure - Reject: Z
3. Configure - Request: W, X = 100, Y = 0
4. Configure - Nack: X = 200
5. Configure - Request: W, X = 200, Y = 0
6. Configure - Ack: W, X = 200, Y = 0
LCP Retransmission

Device 1

Configure - Request

Time-out

Configure - Request

Time-out

Configure - Request

Time-out

Configure - Request

Max-configure

Stopped

Device 2
Link Maintenance and Link Termination

Link Maintenance

- Device 1
- Device 2
- Echo - Request
- Echo - Reply

Link Termination

- Device 1
- Device 2
- Terminate - Request
- Terminate - Reply
- Link Termination
Network Control Protocols IPCP (NCP for IP)

- Allows PPP to support multiple network layer protocols by negotiating parameters that are unique to the particular network layer protocol.

- Responsible for configuring, enabling, and disabling the IP protocol modules on both ends of the point-to-point link.

- Supported IPCP standards:
 - RFC 1332 - The PPP Internet Protocol Control Protocol
 - RFC 1877 - PPP Internet Protocol Control Protocol Extensions for Name Server Addresses

- Supported IPCP negotiation options:
 - IP Address
 - IP Address Compression
 - RFC 1144 - Van Jacobson Compression
 - RFC 3544 – IP Header Compression over PPP
 - RFC 2508 - CRTP
 - RFC 2507 - IP Header Compression
 - Primary and Secondary DNS Server Address
 - Primary and Secondary NBNS Server Address
Network Control Protocols BCP

- BCP is responsible for establishing and configuring Remote Bridging for PPP links
- Supported standard – RFC 3518
- Supported BCP negotiation options:
 - Bridge Identification
 - Line Identification
 - MAC Support
 - Tinygram Compression
 - MAC Address
 - Spanning Tree Protocol
 - IEEE 802 Tagged Frame
 - Management Inline
 - Bridge Control Protocol Indicator
PPP Authentication Protocols

- After the LCP link is set up a series of authentication messages are sent to verify the identity of the device initiating the link. Only if authentication is successful can the link configuration proceed.
 - Password Authentication Protocol (PAP)
 - Challenge Handshake Authentication Protocol (CHAP)
Multilink PPP Protocol

• Multilink PPP (MLP), as defined in RFC 1990, is a variant of PPP

• Allows to bundle multiple low-speed PPP links into a single high-speed logical channel for the transport of traffic

• MLPPP bundles multiple link-layer channels into a single network-layer channel
Multilink PPP Long Fragment Frame Format
- Short Sequence Number Format uses 2 octets ML PPP header with 12 bit Sequence number, 1 bit B flag, 1 bit E flag and 2 reserved bits
Multilink Protocol (MP) Fragmentation
Multilink PPP Long Fragment Frame Format

- Long Sequence Number Format uses 4 octets ML PPP header with 24-bit sequence number, 1 bit B flag, 1 bit E flag and 6 reserved bits

- Flags:
 - Begin (B) Flag - One bit field; 1 on the first fragment and 0 for all other fragments
 - End (E) Flag - One bit field; 1 on the last fragment and 0 for all other fragments
Multilink Point-to-Point Protocol (ML PPP)

- More efficient mapping of Ethernet frames into MLPPP frames equals less processing overhead
- Facilitates traffic delivery to the WAN by application type or IP source/destination address
- Supports an all IP connectionless environment for VPNs
- Uses an average overhead of only 2-3% of the customer’s access bandwidth
• IMA allows some Quality of Service (QoS) capability Contains some considerable overhead
Multilink Frame Relay (MFR)

- Supports variable frame sizes and fragmentation
- Low latency
- Minimal management bandwidth overhead of 2-3%
- Provides for standards-based Service Level Agreements using FRF.13

Other Multilink Technologies
Need for Multi-Class

- MLPPP’s uses contiguous sequence numbering (for all fragments of a packet) does not allow suspension of the sending of a sequence of fragments of one packet in order to send another higher-priority packet.
- This limitation is overcome by Multi-Class MLPPP where each "class" of traffic uses a separate sequence number space and reassembly buffer.
Alternative Methods: 1. Priority Queue
Alternative Methods: 2. Frame Inter-Leaving
Multi-Class MLPPP Explained

MLPPP Router

Tx Buffer
MLPPP (Fragmentation & Link Selection)
Fragmented Frames

Multi-Class

MLPPP Bundle
MLPPP Packets distributed over bundle
Upto 8 T1/E1 lines

PPP Links

Ethernet

Tx Buffer
MLPPP (Fragmentation & Link Selection)
Fragmented Frames
Applications

Protocol Information

PPPoE – PPP over Ethernet
PPPoA – PPP over ATM

Modern (pcm)
56 / 64 kbps

Layer 1
Layer 2
Layer 3
Layer 4 – TCP, UDP

TCP / UDP
TCP / UDP
TCP / UDP
TCP / UDP

L3 Entity
L3 Entity
L3 Entity
L3 Entity

TCP / UDP
TCP / UDP
TCP / UDP
TCP / UDP

L3 Entity
L3 Entity
L3 Entity
L3 Entity

Email
WEB
FTP
Chat Room
Other applications

T1 E1
T3 E3
OC3 OC12
GL's MLPPP Analyzer

- Ability to decode and analyze PPP, MLPPP, and MC-MLPPP packets exchanged between the two nodes over T1/E1 link
- MLPPP analyzer also supports Packet Data Analysis module (requires additional license) to perform detail analysis of MLPPP packets over IP and segregates them into SIP / H323 / Megaco / MGCP / T.38 Fax calls
Supported Protocol Stack

- Application
 (FTP / SNMP / HTTP / DNS / DHCP / SIP etc)
- TCP / UDP
- IP
- PPP
- MLPPP
- Supporting Protocols:
 - BAP
 - PAP
 - LQR
 - CHAP
- Control Protocols:
 - LCP
 - IPCP
 - BCP
 - PPPMuxCP
 - BACP
 - SDCP
 - and more
- T1E1
 (Physical Layer)
Real Time Analysis

TimeSlot Selection

Real Time Analysis
Filter Options
Decode View - MLPPP
Summary, Detail and Hex Dump Views
Statistics

PPP Protocol Analysis PPP

<table>
<thead>
<tr>
<th>Device #</th>
<th>Code</th>
<th>Frame Count (Code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Configure-Request ...</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Configure-Ack (2)</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Terminate-Request ...</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Terminate-Ack (6)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Echo-Request (9)</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>Echo-Reply (10)</td>
<td>33</td>
</tr>
<tr>
<td>Total 1</td>
<td>Total</td>
<td>53</td>
</tr>
</tbody>
</table>

2	Configure-Request ...	3
2	Configure-Ack (2)	1
2	Terminate-Ack (6)	2
2	Echo-Request (9)	24
2	Echo-Reply (10)	24
Total 2	**Total**	**54**

Statistics View

- The table shows various PPP protocol statistics, including frame counts and codes.
- The total frame counts for each category are also displayed, providing a comprehensive view of the protocol analysis.
MLPPP Analyzer with Packet Data Analysis
Offline Protocol Analyzer
MC-MLPPP Emulator
Automated Testing of PPP, MLPPP, & MC-MLPPP using Client Server
• MAPSTM MLPPP is an advanced protocol simulator/tester for MC-MLPPP/MLPPP/PPP protocols over TDM (T1 E1).
• The tester can simulate a complete PPP/MLPPP link between two peers (Router or a Switch), with MLPPP signaling conforming to IETF specifications.
MLPPP Emulator as Router

- MLPPP Emulator is configured as router (using NETWORK TRAFFIC source and sink type) and might be required to maintain the timing while forwarding packets from Ethernet to T1/E1 and vice versa.

- The time difference between the consecutive packets captured from NIC card is maintained while transmitting on T1/E1 and vice versa.
MLPPP Emulator as MLPPP Bridge

- Emulator is configured to act as bridge between two networks, all ARP and traffic (checked against the priority table) received from the network is encapsulated as BPDU (Bridging Protocol Data Unit) and streamed over T1/E1 links.

- The Emulator on another network removes BPDU header, converts to Ethernet and streams to the destination
Impairments

- Various impairments can be introduced before frames are transmitted or during traffic generation.
- In PPP simulation frames are impaired by applying impairment to a particular Pf link.
- One can specify a limited number of impairments or continuous impairment.

Impairments that affect an entire frame:
- CRC Error
- Insert and delete frame
- Frame Error
- Frame duplication

Impairments that affect a frame by impairing frame data:
- Inserting bytes
- Deleting bytes
- Bitwise ANDing octets
- Bitwise ORing octets
- Bitwise XORing octets
Data Verification using Statistics

MLPPP Statistics

- MLPPP statistics provides important information about the MLPPP bundle such as Number of transmitted/received octets, frames, fragments, lost fragments, and PPP/ML/MLC packet fragments received with invalid sequence numbers.
Traffic verification results provide the overall statistics for all classes (MLPPP Simulation) or links (PPP Simulation).

The statistics include number of Transmitted, Received, Matched, Modified, Inserted and Deleted frames.
PPP Statistics

- PPP Statistics provides important statistics information for the selected PPP link, such as the Number of transmitted/received octets, frames, PPP packets with bad addresses, PPP packets with bad control bytes, and PPP packets exceeding the MRU.
Thank You