MAPS[™] for LCS System

Location Services Simulation in 2G, 3G, and 4G

GL Communications Inc.

818 West Diamond Avenue - Third Floor, Gaithersburg, MD 20878 Phone: (301) 670-4784 Fax: (301) 670-9187 Email: <u>info@gl.com</u> Website: <u>http://www.gl.com</u>

What is Location Service (LCS) ?

Public Safety Emergency Center

Application of LCS

Public Safety Services

- Emergency Services, e.g. fire, police, ambulance, etc.
- Emergency Alert Services

Tracking Services

- Stolen phones, computers, other devices
- Vehicle tracking

Location Based Information Services

- Navigation
- City Sightseeing
- Finding nearest service, e.g. restaurant, bank, food store, etc.
- Mobile Yellow Pages
- Location Sensitive Internet

Up to date information

> Temperature, traffic services, etc.

LCS Network Architecture

LCS Functional Entities

GMLC - Gateway Mobile Location Centre

- Central point of LCS architecture
- First node an external LCS client accesses in a GSM or UMTS network
- Request routing information from the HLR (Home Location register) or HSS (Home Subscriber Server)
- Receives final location estimates from the MSC, SGSN, or MME
- SMLC/E-SMLC/SAS Serving Mobile Location Server
 - Server used for the locations calculation. It can calculate with information from LMU (where it is available), or measures of the network itself, such as TA (Timing Advance)
- LMU Location Measuring Unit
 - Equipment required in each cell to enable the calculation of the OTDOA (based on the network location)

Standard Positioning Methods

- Cell- ID and TA Method
- Signal Strength Method
- Angle of Arrival Method (AoA)
- Time of Arrival Method (ToA)
- Time Difference of Arrival Method (TDoA)
- Enhanced Observed Time Difference (E-OTD)
- Assisted GPS Method (A-GPS)

Positioning Methods

Cell- ID and TA Method – Network Based

- An area in which a MS moves freely without updating the location registration, can be estimated using the identification codes assigned to each active (communicating) MS
- The identification codes are Cell Global Identity (CGI), such as Mobile Country Code (MCC), Mobile Network Code (MNC), Location Area Code (LAC) and Cell Identity (CI)
- Positioning error can be reduced by using Timing Advance (TA) which is a measure of the distance between the MS and the BTS

Received Signal Strength (RSS) Method – Network Based

- Distance from each BTS and the MS is approximated using the signal strength received by the MS
- MS is located at the intersection point of three circles centered by three BTSs
- Computed knowing the radius of the circles

Angle of Arrival (AoA) Method – Network Based

- Uses the angle of the signals arriving to the MS from two BTSs
- Reduces the number of required assisting BTSs
- A slight error in measuring the angle, will cause a big error in MS positioning

Time of Arrival Method (ToA) – Network Based

- Triangulation is used in the Time of Arrival (ToA) method to measure the propagation delay of transmitting to multiple BTSs
- ToAs are measured using an additional hardware called Location Measurement Unit (LMU) installed in BTSs
- All LMUs and the MS must share a common clock reference, i.e., strict synchronization is required

Time Difference of Arrival Method (TDoA) – Network Based

Following timing parameters are calculated to compute the final accurate position

- Real Time Difference (RTD): the synchronization difference between the BTSs
- Geometric Time Difference (GTD): the propagation time difference between the BTSs
- Observed Time Difference (OTD): Time difference measured by the mobile between the receptions of bursts transmitted from BTSs

Enhanced Observed Time Difference (E-OTD) – Handset Based

- Mobile listens to bursts sent from neighbouring BTSs
- Mobile records burst arrival times
- Position is triangulated from:
 - Coordinates of BTSs
 - Arrival time of burst from each BTS
 - Timing differences between BTSs

Assisted GPS Method (A-GPS) – Handset Based

- Information from satellite is deployed for positioning
- GPS installed in the BTSs or the handsets
- GPS in handsets increases size and power consumption
- A-GPS methods are expensive, but they are accurate
- Requires only one BTS to find outdoor position
- Poor performance in dense urban areas or indoors
- Suggested to be combined with other methods

Standard Positioning Methods used in 2G/3G/4G

- The standard positioning methods supported within GERAN are:
 - Timing Advance
 - Enhanced Observed Time Difference (E-OTD) positioning mechanism
 - Uplink Time Difference of Arrival (U-TDOA) positioning mechanism
- The standard positioning methods supported within UTRAN are:
 - Cell ID based method
 - Network-assisted GPS methods (A-GPS)
 - Uplink Time Difference of Arrival (U-TDOA) positioning mechanism
- The standard positioning methods supported within E-UTRAN are:
 - Network-assisted GPS methods (A-GPS)
 - Downlink positioning Received Signal Strength
 - Enhanced cell ID method Hybrid Methods

Comparison of Positioning Methods

Positioning Methods	Accuracy (in meters)	Characteristics	Coverage
Cell-ID & TA	100-1500	Network Based	High
RSS	200-500	Network Based	High
AOA	100-200	Network Based	Good
ТОА	50-200	Network Based	Good
TDOA	50-150	Network Based	Good
E-OTD	50-100	Handset Based	Good
A-GPS	5-30	Handset Based	Variable

MAPS™ MA - Message Automation + PS - Protocol Simulation

Supported Protocols / Interfaces

Common Protocol Emulation Framework

LTE Simulation

Common Features

- Multi-protocol, Multi-interface Simulation
- Script based and protocol independent software architecture
- Auto generate and respond to signaling messages
- Traffic Handling Capabilities (requires additional license)
- Automated Bulk Call Generation / Stress Testing
- Easy script builder for quick testing to advance testing
- Customization of test configuration profiles
- Unlimited ability to customize the protocol fields and call control scenarios

High Density (HD) Traffic Simulation

- IP variants of MAPS can be run on any modern Windows server
- A typical i7 platform will be able to handle ~2000 concurrent RTP sessions through a conventional server-grade NIC
- We also offer an HD (High Density) appliance which
- can deliver up to 20,000 concurrent RTP sessions per U of rack space

Remote MAPS Controller

- Multi-node and multi-interface simulation from a single GUI
- Suitable for testing any core network, access
 network, and inter-operability functions
- Single Licensing Server controlling server and client licenses (no. of users)
- Unlimited number of remote client user can be defined at the server
- Admin privileges to control Testbed and access to configuration files for each remote client user
- Remote Client users has privileges to perform all other functions - call simulation, edit scripts/profiles, and view statistics
- Simultaneous traffic generation/reception at 100% on all servers

MAPS APIs

- API wraps our proprietary scripting language in standard languages familiar to the user:
 - > Python
 - > Java
- Clients and Servers support a "Many-to-Many" relationship, making it very easy for users to develop complex test cases involving multiple signaling protocols

Statistics and Reporting

Call Statistics and Graph

User Defined Statistics

🗅 🧀 🔒 🖪	Add Tab	Delete Ta
Packet Stats		
Name	Values	
Active RTP Sessions	1987	
Completed RTP Sessions	1548093	
Sessions With Zero Receive Traffic	0	
	0	
MOS Score Stats	0	
	0	
Sessions with Mos (5.0 - 4.0)	612618 [39%]	
Sessions with Mos (4.0 - 3.0)	852971 [55%]	
Sessions with Mos (3.0 - 2.0)	73446 [4%]	
Sessions with Mos (< 2.0)	9058 [0%]	
	0	
Total RTP Packet Sent	4485008797	
Total RTP Packet Received	4481760883	
	0	
Packet-Loss Stats	0	
	0	
Total PacketLoss	4072 [0%]	
Sessions with Zero Packet-Loss	1534967 [99%]	
Sessions with Packet-Loss(<1%)	13126 [0%]	
Sessions with Packet-Loss(1% - 5%)	0 [0%]	
Sessions with Packet-Loss(5% - 10%)	0 [0%]	
Sessions with Packet-Loss(>10%)	0 [0%]	
Packet-Discarded Stats	0	
Packet-Discarded Stats	0	
Total PacketDiscarded	3738934 [0%]	
Sessions with Zero Packet-Discard	1464299 [94%]	
Sessions with Packet-Discard(<1%)	41479 [2%]	
Sessions with Packet-Discard(1% - 5%)	37232 [2%]	
Sessions with Packet-Discard(5% - 10%)	4843 [0%]	
Sessions with Packet-Discard(>10%)	240 [0%]	
	0	
Packet-Duplicate Stats	0	
	0	
Total Duplicate Packet	0 [0%]	
Sessions with Zero Duplicate Packets	1539942 [99%]	
Sessions with Duplicate Packets(<1%)	0 [0%]	
Sessions with Duplicate Packets(1% - 5%)	0 [0%]	
Sessions with Duplicate Packets(5% - 10%)	0 [0%]	
Sessions with Duplicate Packets(>10%)	0 [0%]	
	0	
Packet-Out Of Sequence Stats	0 [0%]	
Table Out of Converse Desire	0	
Total Out Of Sequence Packet	0 [0%]	
Sessions with Zero OOS Packets	1539942 [99%]	
Sessions with OOS Packets(<1%) Sessions with OOS Packets(1% - 5%)	0 [0%]	
Sessions with OOS Packets(1% - 5%) Sessions with OOS Packets(5% - 10%)	0 [0%]	
Sessions with OOS Packets(>10%)	0 [0%]	
	0	
Jitter Stats	0	
	0	
Sessions with Jitter(< 1 msec)	1450779 [93%]	
Sessions with Jitter(< 5 msec)	93031 [6%]	
Sessions With Jitter(< 10 msec)	4841 [0%]	
Sessions With Jitter(>= 10 msec)	350 [0%]	
<		

GL's MAPS[™] in LCS Network

Supported Interfaces

Lb Interface

- ➤ MAPS[™] supports Location Service (LCS) based GSM Lb interface
- Between the BSC <-> SMLC is Lb interface
- Lg, Lh Interfaces
 - ➤ MAPS[™] MAP IP supports Location Service (LCS) based Lh and Lg interfaces
 - Between the GMLC <-> HLR is Lh interface and between GMLC <->MSC/SGSN is Lg interface
- SLs Interface
 - ➤ MAPS[™] supports Location Service (LCS) based LTE SLs interface
 - Between the MME <-> SMLC is SLs interface
- SLh, SLg Interfaces
 - ➤ MAPS[™] Diameter supports Location Service (LCS) based SLh and SLg interfaces
 - Between the GMLC <-> HSS is SLh interface and between GMLC <->MME is SLg interface

Location Service Simulation

- MAPS[™] supports simulation of different Positioning methods and Position Estimation of a Mobile Stations (MS) in universal coordinates
- Location estimate parameters such as Type of Shape and coordinates can be input through conventional user profiles or can be fetched from a CSV file
- Co-ordinates indicate different position of MS at different intervals of time
- Report is sent either periodically at specified time duration or at once when requested

LCS in 2G Architecture

2G - Procedures

MS

- (1) Location Service Request
- (2) Identify Subscriber
- (3) Route to Identified Subscriber
- (4) Forward to BSC
- (5) Forward to SMLC
- (6) Request to Calculate
- (7) Request forwarded to MS/LMU

- (8) Positioning Parameters are sent to BSC
- (9) Request to Calculate
- (10) Subscriber Location Report to BSC
- (11) Forward Report to MSC
- (12) Forward Report to GMLC
- (13) Forward Report to Client

2G - Typical Call Flow

LCS in 3G Architecture

MAPS[™] lupc Emulator

3G - Procedures

- (1) Location Service Request
- (2) Identify Subscriber
- (3) Route to Identified Subscriber
- (4) Forward to RNC
- (5) Forward to SAS
- (6) Response from SAS
- (7) Request forwarded to MS

- (8) Positioning Parameters are sent to RNC
- (9) Request to Calculate
- (10) Subscriber Location Report to RNC
- (11) Forward Report to MSC
- (12) Forward Report to GMLC
- (13) Forward Report to Client

LCS in 4G Architecture

MAPS[™] Diameter Emulator (SLg, and SLh) MAPS[™] LTE SLs Emulator

4G - Procedures

- Identify Subscriber (2)
- Route to Identified Subscriber (3)
- (4) - Forward to E-SMLC
- (5) - Response from E-SMLC
- (6) - Request to Calculate

- (8) Request to Calculate
- (9) Subscriber Location Report to MME
- (10) Forward Report to GMLC
- (11) Forward Report to Client

4G - Typical Call Flow

Thank you

