Main Features

- Simulates RNC, and MSC entities in IuCS interface over IP and ATM.
- Simulates Home NodeB (HnB) and Home NodeB Gateway (HnB GW) entities in IuH interface.
- User controlled access to Mobility Management, Session Management, RANAP, and DTAP messages.
- Supports RAB Assignment, Authentication, TMSI Reallocation, Encryption, and other procedures.
- Ready scripts for Mobile Originating Voice/SMS Call, Mobile Terminating Voice/SMS Call, Location Updating, Mobile to Mobile Voice/SMS Call, SMS over active voice call and Handover procedures for quick testing.
- Supports sending/receiving SMS while the voice call is active.
- Massive UE simulation (up to 20,000) with related information access directly from Database, or CSV files.
- Simultaneous call simulation of up to 2,000 on regular RTP core; however with RTP HD appliance (#PKS109) up to 20,000 simultaneous calls can be achieved.
- SSCOP links over which RANAP and ALCAP signaling will be carried further for making calls.
- SSCOP Server (GL's WCS based server module) provides SSCOP, AAL5 and AAL2 layer services.
- Supports various traffic types including Tone, Digits and File playback over AAL2.
- Supports traffic over Iu UP protocol layer and also over normal RTP sessions (requires additional licenses).
IuCS and IuH over IP

GL's MAPS™ UMTS IuCs can emulate the RNC (Radio Network Controller) and the MSC (Mobile Switching Centre) by generating RANAP and DTAP signaling messages over SCTP. It includes ready scripts to simulate Location Update, Call Control MO (Mobile Originating), Mobile Terminating (MT), Mobile-to-mobile Voice Call/ SMS, SMS over active voice call, and Handover (Relocation) procedures.

GL's MAPS™ IuCS is also available in High Density version (requires a special purpose network appliance and PKS109 RTP HD licenses). This is capable of high call intensity (hundreds of calls/sec) and high volume of sustained calls (tens of thousands of simultaneous calls/ platform).

MAPS™ IuCS IP supports traffic over Iu UP protocol layer with additional licensing. Also, supports RTP traffic simulation (requires additional licensing) including various types such as send and receive tone, digits, and voice files.

MAPS™ UMTS IuH simulates Femto Home Node B (HnB), and a Femto Home Node Gateway (HnB-GW) entities by generating RANAP signaling messages over SCTP. It includes ready scripts to simulate Location Update, Call Control MO (Mobile Originating), and Mobile Terminating (MT) procedures.

MAPS™ IuH over IP supports RTP and GTP traffic with additional licensing. RTP traffic simulation includes automated and user-defined traffic types to send and receive tone, digits, voice files, and IVR. GTP traffic simulation includes Mobile and Gateway traffic.

For comprehensive details on the application, please visit http://www.gl.com/maps-umts-iucs-iuh-emulator.html webpage.

IuCS over ATM

GL's LightSpeed1000™ hardware platform (PCIe Card) with quad optical ports supports simulation of UMTS IuCs over ATM layer on OC-3/STM-1 interface using MAPS™ IuCS ATM application. The LightSpeed1000™ comes with software for overall monitoring, protocol simulation and analysis, bert, recording, and playback of Unchannelized ATM, PoS, and Channelized traffic. The hardware can also be easily configured/programmed for delaying of ATM Cells or PPP packets.

MAPS™ IuCS ATM uses SSCOP server for establishing SSCOP links over which RANAP, ALCAP, and DTAP signaling will be carried for making calls. SSCOP Server is a GL's WCS based server module that provides SSCOP, AAL5, and AAL2 layer services. MAPS™ IuCS ATM generates AAL2 traffic including Tone, Digits and File playback types.

For comprehensive details on the application, please visit http://www.gl.com/OC3-OC12-analysis-emulation-card.html webpage.
Testbed Configuration

The test configuration window allows users to configure the necessary parameters in order to establish communication between MAPS™ and the DUT.

Testbed includes various parameter settings which configures the MAPS™ as the network entity. Once the transport layer is configured properly, protocol specific signaling messages and traffic can be transmitted and received successfully.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNC</td>
<td>1</td>
</tr>
<tr>
<td>MSIP</td>
<td>100.19.12.205</td>
</tr>
<tr>
<td>MSC</td>
<td>203</td>
</tr>
<tr>
<td>MSC Point Code</td>
<td>232</td>
</tr>
<tr>
<td>MSC Address Indicator</td>
<td>National</td>
</tr>
</tbody>
</table>
| HOITP Media Configuration | [
| End User Configurations | MG_Profiles.xml |
| CSV file Name | MG_Profile_MGCSV.csv |
| Enable SMF Filter for CSV | True |
| Rate of SMF Calls | 10 % |

Pre-processing Tools

Message Editor - With message editor, users can build a template for each protocol message type. The value for each field may be changed in the message template prior to testing. The protocol fields comprises of mandatory fixed parameters, mandatory variable parameters, and optional variable parameters.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Type</td>
<td>LOCALIZATION_REQUEST</td>
</tr>
<tr>
<td>Protocol Type</td>
<td>LOCALIZATION_REQUEST</td>
</tr>
<tr>
<td>OpCode</td>
<td>LOCALIZATION_REQUEST</td>
</tr>
</tbody>
</table>

Script Editor - The script editor allows the user to create / edit scripts and also import/export files that define variables for the message template parameters. The script uses pre-defined message templates to perform send and receive actions.

Profile Editor - The profile editor allows user to edit or create profiles in order to define values to the variables for the message templates. The users can edit the values of the variables thus replacing the original value of the variables in the message template.

An XML file defines a set of multiple profiles with varying parameter values that allow users to configure call instances in call generation and to receive calls.

Users can configure the traffic options for Auto traffic type or User-defined traffic type. Supported traffic configuration includes Send/Receive file, DTMF/MF digits, and Single/Dual tones.

GL Communications Inc.

818 West Diamond Avenue - Third Floor, Gaithersburg, MD 20878, U.S.A

(Web) http://www.gl.com/
(V) +1-301-670-4784
(F) +1-301-670-9187
(E-Mail) gl-info@gl.com
MAPS™ IuCS IP Call Simulation

Mobile-to-Mobile Voice Call Procedure
The Mobile-to-Mobile call is initiated by the User Equipment (UE). On receiving the Location Update Request, the UE initiates the call by sending the location update message to network and on receiving acknowledgement, the LU call gets terminated. Once the location update is successful, Call Control Mobile Originating (MO) procedure is initiated from UE towards the network.

The Mobile Terminating Call is initiated by Network by sending Paging message towards UE. Here, the UE is the receiver of a call. UE will send the Paging Response message, thus completing the mobile-to-mobile call via the network.

The following procedure flow illustrates the Mobile Originating (MO) call towards the network and the Mobile Terminating (MT) call initiated from the network towards the UE.

![Figure: Mobile Originating Call Procedure over IP](image1)

Mobile-to-Mobile SMS Call procedure
The Mobile-to-Mobile SMS Call Procedure is similar to Mobile to Mobile Voice Call Procedure, the SMS is initiated at the User Equipment. On receiving the Location Update the UE imitates the SMS by sending the location update message to network following which the Call Control Mobile Originating (MO) call is initiated.

MAPS™ IuCS supports mobile-to-mobile SMS procedure, sent or received from mobile phone to-mobile phone.

MAPS™ IuCS supports both Short message Mobile Originated (SMS-MO) and Short message Mobile Terminated (SMS-MT) procedures.

![Figure: Mobile-to-Mobile SMS Call Procedure](image2)

Handover (Relocation) Call Procedure

Relocation is a procedure used during mobility scenarios when Control of the Serving Radio Network Subsystem (SRNS) is changed to another Radio Network Subsystem (RNS).

This procedure is only performed for a UE in CONNECTED state. The Serving SRNS Relocation procedure is used to move the connection between the RAN and the CN for the source SRNC to the RAN for the target RNC, from a "standing still position". In the procedure, the Iu links are relocated.

![Figure: Handover (Relocation) Call Procedure](image3)

Call Simulation

In call generation, MAPS™ is configured for the out going calls, and in call receive mode, it is configured to respond to incoming calls. Tests can be configured to run once, repeated iterations or continuously. Scripts can be set to run sequentially according to a call scenario or randomly.

In receive mode, MAPS™ can be automated to respond to messages using script configuration dialog, where a receive script is preset against particular message expected to arrive.

The following screenshot depicts end-to-end procedure simulation, you may observe the Relocate Required request messages sent from RNC1 to MSC and from MSC to RNC2.

![Figure: Relocation Procedure at MSC](image4)
MAPSTM IuH IP CS and PS Domain Procedures

MAPSTM UMTS IuH supports LUC followed by MOC and MTC procedure initiated from the network procedures in Circuit Switched (CS) domain between HnB-GW and (HnB) terminals. Also, supports all the procedures of IuH interface in PS domain. The following depicts the Circuit Switched (CS) domain LU and MO call procedure flow.

MAPSTM IuCS ATM Call Control MO Procedure

MAPSTM IuCS ATM is configured as RNC (User End), which initiates the LUC procedure by sending LOCATION UPDATING REQUEST message informing the network about its new location. At the network end, MSC completes the LUC procedure by replying with the LOCATION UPDATING ACCEPT message; the LU procedure is released.

The Call Control MO script also handles Mobile Originating call procedure following the Location Update procedure, which is initiated by sending CM SERVICE REQUEST message to the network (MSC).

The script also automatically handles the supported AAL2 traffic over the established call.

MAPSTM IuH IP CS and PS Domain Procedures

The following depicts the Packet Switched (PS) domain GPRS Attach procedure flow.

Figure: Circuit Switched (CS) Domain Call Procedure

Figure: Mobile Originating Call Procedure over ATM

Figure: Packet Switched (PS) Domain Call Procedure
Supported Protocols and Specifications

<table>
<thead>
<tr>
<th>Supported Protocols</th>
<th>Standard / Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iu-CS Interface</td>
<td></td>
</tr>
<tr>
<td>SCCP</td>
<td>Q.713, CCITT (ITU-T) Blue Book</td>
</tr>
<tr>
<td>MTP3</td>
<td>Q.703, ITU-T Blue Book</td>
</tr>
<tr>
<td>RANAP</td>
<td>3GPP TS 25.413 V9.1.0</td>
</tr>
<tr>
<td>MM / CC</td>
<td>3GPP TS 24.008 V5.16.0 (2006-06)</td>
</tr>
<tr>
<td>RR</td>
<td>3GPP TS 04.18 V8.13.0</td>
</tr>
<tr>
<td>SMS</td>
<td>3GPP TS 03.40 V7.5.0 & 3GPP TS 04.11 V7.1.0 GSM 03.38 version 7.2.0 Release 1998</td>
</tr>
<tr>
<td>Iu UP (User Plane)</td>
<td>3GPP TS 25.415</td>
</tr>
</tbody>
</table>

Iu-H Interface

<table>
<thead>
<tr>
<th>Supported Protocols</th>
<th>Standard / Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUA</td>
<td>3GPP TS 25468 V9.1.0</td>
</tr>
<tr>
<td>RANAP</td>
<td>3GPP TS 25.413 V9.1.0</td>
</tr>
<tr>
<td>MM / CC</td>
<td>3GPP TS 04.08 V7.17.0</td>
</tr>
<tr>
<td>RR</td>
<td>3GPP TS 04.18 V8.13.0</td>
</tr>
<tr>
<td>SMS</td>
<td>3GPP TS 03.40 V7.5.0 & 3GPP TS 04.11 V7.1.0 GSM 03.38 version 7.2.0 Release 1998</td>
</tr>
</tbody>
</table>

Iu-CS ATM Interface

<table>
<thead>
<tr>
<th>Supported Protocols</th>
<th>Standard / Specification Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCOP</td>
<td>ITU-T Q.2110</td>
</tr>
<tr>
<td>MTP3b</td>
<td>ITU-T Recommendation Q.2210</td>
</tr>
<tr>
<td>AAL Type 2 (ALCAP)</td>
<td>ITU-T Recommendation Q.2630.1</td>
</tr>
<tr>
<td>RANAP</td>
<td>3GPP TS 25.413 V9.1.0</td>
</tr>
<tr>
<td>MM / CC</td>
<td>3GPP TS 24.008 V5.16.0 (2006-06)</td>
</tr>
<tr>
<td>RR</td>
<td>3GPP TS 04.18 V8.13.0</td>
</tr>
<tr>
<td>SMS</td>
<td>3GPP TS 03.40 V7.5.0 & 3GPP TS 04.11 V7.1.0 GSM 03.38 version 7.2.0 Release 1998</td>
</tr>
<tr>
<td>Iu UP (User Plane)</td>
<td>3GPP TS 25.415</td>
</tr>
</tbody>
</table>

Figure: Protocol Stack for IuCS Interface

Figure: Protocol Stack for Iu-H Interface

Figure: Protocol Stack for Iu-CS ATM Interface
Buyer's Guide

PKS160 - MAPS™ UMTS – Iu-CS Interface Emulation
MAPS™ UMTS – IuH Interface Emulation

PKS102 - RTP Traffic Option

PKS109 - UMTS IuCS and IuH HD

PKS103 - RTP IuUP Soft Core

PCD103 - AMR codec for MAPS™

PCD104 - EVRC codec for MAPS™

PCD105 - EVR_B codec for MAPS™

PCD106 - EVR_C codec for MAPS™

MAPS™ UMTS IuCS ATM with Lightspeed1000™

LTS100 - Lightspeed1000™ - Dual OC3/12 STM1/4 PCIe Card

LTS105 - Lightspeed1000™ - Portable Dual OC3/12 STM1/4 USB Unit

LTS220 - OC-3 / STM-1 MAPS™ UMTS IuCS over ATM, requires LTS214

LTS214 - OC-3 / STM-1 SSCOP Server

LTS217 - OC-3 / STM-1 AAL2 Traffic Core

LTS320 - OC-12 / STM-4 MAPS UMTS IuCS over ATM, requires LTS314

LTS314 - OC-12 / STM-4 SSCOP Server

LTS317 - OC-12 / STM-4 AAL2 Traffic Core

Related Software

XX165 - T1 or E1 UMTS Protocol Analyzer

LTS206 - OC-3 / STM-1 UMTS Protocol Analysis

LTS306 - OC-12 / STM-4 UMTS Protocol Analysis

PKS164 - MAPS™ UMTS – Iu-PS Interface Emulation

PKS130 - MAPS™ SIGTRAN (SS7 over IP)

PKS120 - MAPS™ SIP

PKS121 - MAPS™ SIGTRAN (SS7 over IP)

PKS122 - MAPS™ MEGACO

PKS123 - MAPS™ MEGACO Conformance Test Suite (Test Scripts)

PKS124 - MAPS™ MGCP and Conformance Test Suite

PKB100 - RTP Toolbox™

PKS100 - PacketGen™

PKV100 - PacketScan™ (Online and Offline)

GL Communications Inc.
818 West Diamond Avenue - Third Floor, Gaithersburg, MD 20878, U.S.A
(Web) http://www.gl.com/ - (V) +1-301-670-4784 (F) +1-301-670-9187 - (E-Mail) gl-info@gl.com

Document Number: PKS160-LTS220-7.11.09-01