GL Communications Inc.
 
 
Home >  VoIP Analysis and Simulation  >  MAPS™

Critical Measurements in Air Traffic Management


Overview

The latest EUROCAE (European Organization for Civil Aviation Equipment) ED-137 inter-operability standards, address migration and implementation of IP technology for voice services for air traffic control. The familiar industry standard SIP protocol is specified to establish, modify, and terminate voice sessions with endpoint equipment within an Air Traffic Services Ground Voice Network (AGVN).  

As shown above, the endpoint equipment can be a SIP based Controller Working Position (CWPs), Next Generation Voice Communication Systems (VCS) and Radios, or VCS/Radio Gateways allowing interworking with older legacy equipment and protocols. The legacy TDM VCS system will initially connect to an IP WAN network backbone using VoIP gateways.

Though migrating to an IP network provides convergence advantages for traffic and interoperable network elements from various vendors, it also poses challenges – of variability of  different implementations  by equipment vendors.  Some of these are: implementation of technologies with varied jitter buffer, packetization, digital signal processing algorithms, VOX operations, and switching from idle to active state. These implementation differences impact end-to-end delay requirements imposed by various industry standard bodies. Characterizing and limiting these impairments is critical to the performance of the system as a whole. Rigorous methods are needed to precisely measure the delay introduced by each network element as events  propagate end-to-end. Recognizing, capturing, timestamping, and correlating events at analog, TDM and IP interfaces are necessary.  Delay measurements should be conducted repeatedly  to ensure  that the device and network under test is performing as expected  consistently over time.

GL has developed a suite of tools to accurately simulate and measure all delay requirements. GL’s MAPS Controller can be used to control the various GL tools to perform all the tests repeatedly  1000s of times and record the results for post analysis.

Critical Events and Measurements of Interest

Events of Interest within Network as they propagate within Network:

  • PTT Activation and Deactivation
  • Squelch Enable and Disable
  • Voice to/from CWP
  • Voice to/from Radio
  • Various SIP Signaling
  • Transition in RTP Payload
  • Transition in RTP Headers

Network Delay measurements of interest:

  • Transmitter activation delay
  • Aircraft call indication delay
  • Ground transmission voice delay
  • Transmitter activation and aircraft call indication loopback delay
  • Ground reception voice delay
  • Ground transmission and reception voice loopback delay
  • Frequency key activation response time and more

The time from which an Air Traffic Controller depresses the PTT until the IP stream indicates that the PTT bit is set is an important testing example. This delay measurement is possible using GL’s Audio Analyzer and GL’s Packet Analyzer. Both are capable of generating TTL triggers based on PTT activation. The Packet Analyzer is capable of generating Packet and TTL triggers based on real time packet detection, filtering, and capture as necessary.

Below a remotely located  MAPS™ Controller can instruct GL’s Audio Analyzer connected to a CWP to activate PTT and simultaneously generate a TTL trigger.  The Discrete Signal Logger connected to the Audio Analyzer can detect the TTL trigger and post an event to the Event Data Logger. On the IP side, GL’s Packet Analyzer which is monitoring the line non-intrusively can detect the packets of interest (e.g.first RTP packet with PTT bit set) based on the filters set and post an event to Event Data Logger. Centrally located the Event Data Logger time tags these received events and reports these events to the MAPS™ Controller. The MAPS™ Controller will calculate the time difference between different events posted and reports the measured delay.

Test Tools for Delay Measurements

Audio Analyzer – The Audio Analyzer is a 4-wire audio device that can connect to a CWP and emulate a controller. It can also be utilized in other areas of the network where analog audio signals are present. It has the ability to generate TTL for different actions (PPT ON, PTT OFF, Send Audio, Detect Audio).

  • Emulate controller by activating PTT and transmitting audio
  • Send, detect and record audio signals at the CWP, Radio and VoIP gateway interfaces
  • Ability to test for Voice Quality (as per ITU-PESQ, POLQA), Noise, and Latency over the Analog / TDM and VoIP networks

Discrete Signal Logger – The Discrete Signal Logger monitors the TTL output from the Audio Analyzer and generates a corresponding IP packet. This indicates a certain event has occurred. The packets generated by the Discrete Signal Logger are named as discreet events.

Packet Analyzer – It functions like an Ethernet tap. It acts as a transparent Ethernet link in which bidirectional Ethernet traffic flows through at line rate. However, Packet Analyzer filters packets of interest from both directions without disturbing the traffic. The filtered packet's first 12 bytes of the MAC header is modified (overwritten) with useful information such as the filter number, port number, and device ID. These modified packets are forwarded over the Event Data Logger. User can configure the Packet Analyzer to aggregate filtered packets from both directions and forward over a single output port. The packets generated by the Packet Analyzer are named as Timed Events.

Event Data Logger – The Event Data Logger is located at a central location and receives the event packets forwarded from the various Discrete Signal Loggers or the Packet Analyzer systems throughout the network. It timestamps each received packet, decodes the packet to extract information, and updates both Discrete Events (from the Discrete Signal Logger) and Timed Events (from Packet Analyzer) to the MAPS™ Controller.  It utilizes an onboard 2 GB DDR2 memory to temporarily store the received packets before being transferred to the MAPS™ Controller for analysis. The MAPS™ Controller will calculate the time difference between different events posted and reports precise measured delay at different points in the network. 

MAPS ED137 Radio and Telephone Emulators - GL's MAPS™ ED137 Radio and MAPS™ ED137 Telephone Emulators can simulate Radio and Telephone calls as per EUROCAE's ED137-1B and ED137-2B specifications. Using Bulk Call capability of these tools user can generate hundreds of calls as background traffic while making delay measurements. Good sample applications can be to simulate real time scenarios like PBH and PBM by generating required bulk calls in the background.

IPNetSim™ – The new IPNetSim™ an IP Network Emulator emulates an IP network with access to 10 Gbps full duplex link or a 10/100/1000 Mbps full duplex link. The incoming traffic can be identified into separate user defined stream for each direction, which can then be modified to simulate network malfunctions. Each direction supports up to 16 streams, allowing up to a total of 32 streams in both directions.

The IPNetSim™ is connected to the 2 end points of a WAN link, allowing it to act either as a transparent bidirectional Ethernet link or a simple Ethernet bridge between 2 end points. The different WAN link speeds are emulated between Port 1 (P1) and Port 2 (P2), with RS232/DSL/Modem/T1/E1/T3/E3 and more speeds. IPNetSim™ supports various impairments like:

  • Bandwidth emulation from 100 Kbps up to 10 Gbps in increments of 1 Kbps emulating various WAN technologies like Modem, DSL, T1/E1/T3/E3/OC3/OC12 etc
  • Latency/Delay emulation from 0 milliseconds to 8 seconds, with single, uniform and random distributed delay emulation capabilities
  • Packet Loss emulation, from 0 to 100%
  • Packet Reordering emulation, from 0 to 100% with random reinsertion delay
  • Packet Duplication emulation, as a percentage of total packets, from 0 to 100%
  • Logic Error Insertion - inserts error anywhere within the frame, from 10-1 to 10-9 rate


Buyer's Guide

Please Note: The XX in the Item No. refers to the hardware platform, listed at the bottom of the Buyer's Guide, which the software will be running on. Therefore, XX can either be ETA or EEA (Octal/Quad Boards), PTA or PEA (tProbe Units), UTA or UEA (USB Units), HUT or HUE (Universal Cards), and HDT or HDE (HD cards) depending upon the hardware.

Item No. Item Description

PKS118

MAPS™ ED137 Radio

PKS119

MAPS™ ED137 Telephone

PKS107

RTP EUROCAE ED137

PKS109 MAPS™ High Density RTP Generator

PKS111

MAPS™ Remote Controller

PKS170 CLI Support for MAPS™
PKS121 MAPS™ SIP Conformance Test Suite (Test Scripts), requires PKS120
PKS102 RTP Soft Core for RTP Traffic Generation
PKS200 RTP Pass Through Fax Emulation
  Related Software
PKS122 MAPS™ MEGACO Emulator
PKS123 MAPS™ MEGACO Conformance Test Suite (Test Scripts)
PKS124
MAPS™ – MGCP Protocol Emulation with Conformance Test Suite
PKS130 MAPS™ SIGTRAN Emulator
PKS100 PacketGen™ with PacketScan™
PKV100 PacketScan™ (Online and Offline)
PKV120 PacketScan™ HD w/4 x 1GigE
PKV120p PacketScan HD™ w/4 x 1GigE - Portable
PKV123 PacketRecorder HD™ & PacketRePlay HD™
PKV121 PacketScan™ FB
PKB100 RTP Toolbox™
PKB105 G.168 Echo Canceller Test Compliance Suite
PKB070 Audio Processing Utility
  Related Hardware
IPN502 IPNetSim™ - 1G – MultiStream – Rack System
IPN504 IPNetSim™ - 10G – MultiStream – Rack System
IPN505 IPNetSim™ - 1G Tablet

 

 
 
Home Page Sitemap Global Presence Email